Differences in proton pumping and Na/H exchange at the leaf cell tonoplast between a halophyte and a glycophyte
نویسندگان
چکیده
The tonoplast Na(+)/H(+) antiporter and tonoplast H(+) pumps are essential components of salt tolerance in plants. The objective of this study was to investigate the transport activity of the tonoplast Na(+)/H(+) antiporter and the tonoplast V-H(+)-ATPase and V-H(+)-PPase in a highly tolerant salt-accumulating halophyte, Salicornia dolichostachya, and to compare these transport activities with activities in the related glycophyte Spinacia oleracea. Vacuolar membrane vesicles were isolated by density gradient centrifugation, and the proton transport and hydrolytic activity of both H(+) pumps were studied. Furthermore, the Na(+)/H(+)-exchange capacity of the vesicles was investigated by 9-amino-6-chloro-2-methoxyacridine fluorescence. Salt treatment induced V-H(+)-ATPase and V-H(+)-PPase activity in vesicles derived from S. oleracea, whereas V-H(+)-ATPase and V-H(+)-PPase activity in S. dolichostachya was not affected by salt treatment. Na(+)/H(+)-exchange capacity followed the same pattern, i.e. induced in response to salt treatment (0 and 200 mM NaCl) in S. oleracea and not influenced by salt treatment (10 and 200 mM NaCl) in S. dolichostachya. Our results suggest that S. dolichostachya already generates a high tonoplast H(+) gradient at low external salinities, which is likely to contribute to the high cellular salt accumulation of this species at low external salinities. At high external salinities, S. dolichostachya showed improved growth compared with S. oleracea, but V-H(+)-ATPase, V-H(+)-PPase and Na(+)/H(+)-exchange activities were comparable between the species, which might imply that S. dolichostachya more efficiently retains Na(+) in the vacuole.
منابع مشابه
Na compartmentalisation in Salicornia
The tonoplast Na + /H + -antiporter and the tonoplast H + -pumps are essential components of salt tolerance in plants. The objective of this study was to investigate the transport activities of the tonoplast Na + /H + -antiporter and the tonoplast V-H + -ATPase and V-H + -PPase in a highly tolerant salt accumulating halophyte, Salicornia dolichostachya, and to compare these transport activities...
متن کاملSalt Tolerance and Crop Potential of Halophytes
Although they represent only 2% of terrestrial plant species, halophytes are present in about half the higher plant families and represent a wide diversity of plant forms. Despite their polyphyletic origins, halophytes appear to have evolved the same basic method of osmotic adjustment: accumulation of inorganic salts, mainly NaCl, in the vacuole and accumulation of organic solutes in the cytopl...
متن کاملDifferential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa
Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow (SV) and fast (FV) tonoplast channels to match specific growth conditions by ensuring that most of a...
متن کاملAssessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses
Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...
متن کاملActivity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt.
The efficient exclusion of excess Na from the cytoplasm and vacuolar Na(+) accumulation are the main mechanisms for the adaptation of plants to salt stress. This is typically carried out by transmembrane transport proteins that exclude Na(+) from the cytosol in exchange for H(+), a secondary transport process which is energy-dependent and driven by the proton-motive force generated by plasma-me...
متن کامل